Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1671
Title: A Comparison efficiency of classification of diabetic patients using data transformation techniques for data mining techniques
Other Titles: การเปรียบเทียบประสิทธิภาพการจำแนกผู้ป่วยโรคเบาหวานโดยใช้เทคนิคการแปลงข้อมูล สำหรับเทคนิคการทำเหมืองข้อมูล
Authors: Kakandee, Athitaya
Hengpraprohm, Kairung
Silachan, Klaokanlaya
Keywords: Transformation
Classification
Neural Network
Decision Tree
K-nearest neighbor
Issue Date: 8-Jul-2022
Publisher: The 14th NPRU National Academic Conference Nakhon Pathom Rajabhat University
Abstract: The objective of this study was to built a classification model for diabetes patients from the transformed datasets using Min-Max, Mean, Z-score and Root formats to compare whether the transformed data were diabetic. Which is suitable for the classification technique that provides the best classification accuracy? By comparing the model efficiency of 4 types of data mining techniques, namely, Neural Network, Decision tree and k – nearest neighbor. From the experiment, it was found that the neural network had the highest efficiency in data classification accuracy is 75.13%.
URI: https://publication.npru.ac.th/jspui/handle/123456789/1671
Appears in Collections:Proceedings of the 14th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
npru-90.pdf335.05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.