Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1671
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKakandee, Athitaya-
dc.contributor.authorHengpraprohm, Kairung-
dc.contributor.authorSilachan, Klaokanlaya-
dc.date.accessioned2022-08-19T16:55:33Z-
dc.date.available2022-08-19T16:55:33Z-
dc.date.issued2022-07-08-
dc.identifier.urihttps://publication.npru.ac.th/jspui/handle/123456789/1671-
dc.description.abstractThe objective of this study was to built a classification model for diabetes patients from the transformed datasets using Min-Max, Mean, Z-score and Root formats to compare whether the transformed data were diabetic. Which is suitable for the classification technique that provides the best classification accuracy? By comparing the model efficiency of 4 types of data mining techniques, namely, Neural Network, Decision tree and k – nearest neighbor. From the experiment, it was found that the neural network had the highest efficiency in data classification accuracy is 75.13%.en_US
dc.publisherThe 14th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.subjectTransformationen_US
dc.subjectClassificationen_US
dc.subjectNeural Networken_US
dc.subjectDecision Treeen_US
dc.subjectK-nearest neighboren_US
dc.titleA Comparison efficiency of classification of diabetic patients using data transformation techniques for data mining techniquesen_US
dc.title.alternativeการเปรียบเทียบประสิทธิภาพการจำแนกผู้ป่วยโรคเบาหวานโดยใช้เทคนิคการแปลงข้อมูล สำหรับเทคนิคการทำเหมืองข้อมูลen_US
Appears in Collections:Proceedings of the 14th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
npru-90.pdf335.05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.