Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLimkulakhom, Tada-
dc.contributor.authorHengpraprohm, Kairung-
dc.contributor.authorHengpraprohm, Supojn-
dc.date.accessioned2023-11-06T09:33:13Z-
dc.date.available2023-11-06T09:33:13Z-
dc.date.issued2023-07-14-
dc.identifier.isbn978-974-7063-43-1-
dc.identifier.urihttps://publication.npru.ac.th/jspui/handle/123456789/1933-
dc.description.abstractThe objectives of this research are to 1) study the majority vote ensemble and bootstrap aggregating techniques, and 2) compare the efficiency of the ensemble data classification using 4 data mining techniques including k-nearest neighbor, artificial neural network, decision tree, and support vector machine: with the majority vote ensemble and bootstrap aggregating techniques for classification of breast cancer patient data. The results of the study show that the method that gives the best performance is majority vote and bootstrap aggregating of the artificial neural network by giving a classification accuracy of 97.66, a recall of 93.75 and a precision of 96.4. Followed by the artificial neural network give an accuracy of 97.08, a recall of 93.75 and a precision of 98.36.en_US
dc.publisherThe 15th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.relation.ispartofseriesProceedings of the 15th NPRU National Academic Conference;578-
dc.subjectensemble classification,en_US
dc.subjectK-Nearest Neighboren_US
dc.subjectNeural Networken_US
dc.subjectDecision treeen_US
dc.subjectSupport Vector Machineen_US
dc.subjectMajority voteen_US
dc.subjectBaggingen_US
dc.titleThe Efficiency Comparison of Data Classification Ensemble Techniques for Breast Cancer Patients Dataseten_US
dc.title.alternativeการเปรียบเทียบประสิทธิภาพเทคนิคกลุ่มก้อนการจาแนกข้อมูล โดยใช้ชุดข้อมูลผู้ป่วยมะเร็งเต้านมen_US
dc.typeArticleen_US
Appears in Collections:Proceedings of the 15th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
060.pdf677.05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.