Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1939
Title: A comparison of classification efficiency of breast cancer patient datasets using data mining techniques
Other Titles: การเปรียบเทียบประสิทธิภาพการจาแนกประเภทชุดข้อมูลผู้ป่วยมะเร็งเต้านม โดยใช้เทคนิคเหมืองข้อมูล
Authors: Kakandee, Artitaya
Hengpraprohm, Kairung
Hengpraprohm, Supojn
Keywords: K-Nearest Neighbor,
Decision Tree,
Naive Bayes,
Breast Cancer Dataset,
Data Classification
Issue Date: 14-Jul-2023
Publisher: The 15th NPRU National Academic Conference Nakhon Pathom Rajabhat University
Series/Report no.: Proceedings of the 15th NPRU National Academic Conference;641
Abstract: The objectives of this research are: 1) to study a method for classifying breast cancer patient data, and 2) to compare the efficiency in breast cancer patient classification. Three data classification techniques, namely the k-nearest neighbor, decision tree, and naive bayes are used to test with the breast cancer patient dataset. The experimental results show that the classification of the naive bayes technique gives the best performance with 60% accuracy, 70% precision, 63% recall, and 57% f1-score. Followed by a decision tree that yields 60% accuracy, 61% precision, 61% recall, and 60% f1-score. Finally, the k-nearest neighbor method yields 46% accuracy, 23% precision, 50% recall, and 31% f1-score, respectively.
URI: https://publication.npru.ac.th/jspui/handle/123456789/1939
ISBN: 978-974-7063-43-1
Appears in Collections:Proceedings of the 15th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
066.pdf1.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.