Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1937
Title: A Comparison of Data Classification Efficiency in Chronic Kidney Disease Patients Dataset Using Data Mining Techniques
Other Titles: การเปรียบเทียบประสิทธิภาพการจาแนกข้อมูลผู้ป่วยโรคไตเรื้อรังด้วยเทคนิคเหมืองข้อมูล
Authors: Puchaisang, Chinawat
Hengpraprohm, Kairung
Hengpraprohm, Supojn
Keywords: K-Nearest Neighbor,
Decision Tree
Data Mining
Chronic Kidney Disease
Data Classification 620
Issue Date: 14-Jul-2023
Publisher: The 15th NPRU National Academic Conference Nakhon Pathom Rajabhat University
Series/Report no.: Proceedings of the 15th NPRU National Academic Conference;620
Abstract: The objectives of this research are: 1) to study the data classification for patients with chronic kidney disease using data mining techniques, and 2) to compare the efficiency of two data classifications, namely the k nearest neighbor and decision tree. The experimental results show that the decision tree technique provides the best performance with 93% accuracy, 92% precision, and 92% recall while the k nearest neighbor gives 65% accuracy, 58% precision, and 44% recall respectively.
URI: 978-974-7063-43-1
https://publication.npru.ac.th/jspui/handle/123456789/1937
Appears in Collections:Proceedings of the 15th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
064.pdf831.77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.