Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1937
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPuchaisang, Chinawat-
dc.contributor.authorHengpraprohm, Kairung-
dc.contributor.authorHengpraprohm, Supojn-
dc.date.accessioned2023-11-06T10:15:40Z-
dc.date.available2023-11-06T10:15:40Z-
dc.date.issued2023-07-14-
dc.identifier.uri978-974-7063-43-1-
dc.identifier.urihttps://publication.npru.ac.th/jspui/handle/123456789/1937-
dc.description.abstractThe objectives of this research are: 1) to study the data classification for patients with chronic kidney disease using data mining techniques, and 2) to compare the efficiency of two data classifications, namely the k nearest neighbor and decision tree. The experimental results show that the decision tree technique provides the best performance with 93% accuracy, 92% precision, and 92% recall while the k nearest neighbor gives 65% accuracy, 58% precision, and 44% recall respectively.en_US
dc.publisherThe 15th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.relation.ispartofseriesProceedings of the 15th NPRU National Academic Conference;620-
dc.subjectK-Nearest Neighbor,en_US
dc.subjectDecision Treeen_US
dc.subjectData Miningen_US
dc.subjectChronic Kidney Diseaseen_US
dc.subjectData Classification 620en_US
dc.titleA Comparison of Data Classification Efficiency in Chronic Kidney Disease Patients Dataset Using Data Mining Techniquesen_US
dc.title.alternativeการเปรียบเทียบประสิทธิภาพการจาแนกข้อมูลผู้ป่วยโรคไตเรื้อรังด้วยเทคนิคเหมืองข้อมูลen_US
dc.typeArticleen_US
Appears in Collections:Proceedings of the 15th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
064.pdf831.77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.