Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1939
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKakandee, Artitaya-
dc.contributor.authorHengpraprohm, Kairung-
dc.contributor.authorHengpraprohm, Supojn-
dc.date.accessioned2023-11-06T10:22:27Z-
dc.date.available2023-11-06T10:22:27Z-
dc.date.issued2023-07-14-
dc.identifier.isbn978-974-7063-43-1-
dc.identifier.urihttps://publication.npru.ac.th/jspui/handle/123456789/1939-
dc.description.abstractThe objectives of this research are: 1) to study a method for classifying breast cancer patient data, and 2) to compare the efficiency in breast cancer patient classification. Three data classification techniques, namely the k-nearest neighbor, decision tree, and naive bayes are used to test with the breast cancer patient dataset. The experimental results show that the classification of the naive bayes technique gives the best performance with 60% accuracy, 70% precision, 63% recall, and 57% f1-score. Followed by a decision tree that yields 60% accuracy, 61% precision, 61% recall, and 60% f1-score. Finally, the k-nearest neighbor method yields 46% accuracy, 23% precision, 50% recall, and 31% f1-score, respectively.en_US
dc.publisherThe 15th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.relation.ispartofseriesProceedings of the 15th NPRU National Academic Conference;641-
dc.subjectK-Nearest Neighbor,en_US
dc.subjectDecision Tree,en_US
dc.subjectNaive Bayes,en_US
dc.subjectBreast Cancer Dataset,en_US
dc.subjectData Classificationen_US
dc.titleA comparison of classification efficiency of breast cancer patient datasets using data mining techniquesen_US
dc.title.alternativeการเปรียบเทียบประสิทธิภาพการจาแนกประเภทชุดข้อมูลผู้ป่วยมะเร็งเต้านม โดยใช้เทคนิคเหมืองข้อมูลen_US
dc.typeArticleen_US
Appears in Collections:Proceedings of the 15th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
066.pdf1.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.