Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSitichai, Jirayu-
dc.contributor.authorSitichai, Jirayu-
dc.contributor.authorPalvisut, Phanaya-
dc.contributor.authorPalvisut, Phanaya-
dc.date.accessioned2022-08-19T16:49:46Z-
dc.date.available2022-08-19T16:49:46Z-
dc.date.issued2022-07-08-
dc.date.issued2022-07-08-
dc.identifier.urihttps://publication.npru.ac.th/jspui/handle/123456789/1668-
dc.description.abstractThe purpose of this study was to compare the effectiveness of models in predicting the likelihood of contracting COVID-19. Three data mining techniques were used, namely, decision tree method Naive Bayes method and K-Nearest Neighbor method The efficacy of appropriate identification classification models for predicting the likelihood of contracting COVID-19 was compared using 5,434 rows of 21 columns of COVID-19 data from the kaggle website. Data were analyzed on the basis of CRISP-DM method. Use RapidMiner. using Rapidminer. in modeling in the analysis of data, accuracy, precision, recall. The results showed that the decision tree method was the most effective. The accuracy was 97.85%, followed by the K-Nearest Neighbor method, which gave an accuracy of 97.36%, and Naive Bayes method gave an accuracy of 97.36%. 96.75% from the results of this performance comparison. can adopt the decision tree method can be used as a model for predicting the risk of contracting COVID-19.en_US
dc.publisherThe 14th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.publisherThe 14th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.subjectData miningen_US
dc.subjectDecision tree methoden_US
dc.subjectNaive Bayes methoden_US
dc.subjectCOVID-19en_US
dc.subjectK-Nearest Neighbor methoden_US
dc.titleA Comparison of the COVID-19 Risk Prediction Model with Data Mining Techniquesen_US
dc.titleA Comparison of the COVID-19 Risk Prediction Model with Data Mining Techniquesen_US
dc.title.alternativeการเปรียบเทียบประสิทธิภาพตัวแบบพยากรณ์ความเสี่ยงการติดเชื้อโควิด-19 ด้วยเทคนิคเหมืองข้อมูลen_US
dc.title.alternativeการเปรียบเทียบประสิทธิภาพตัวแบบพยากรณ์ความเสี่ยงการติดเชื้อโควิด-19 ด้วยเทคนิคเหมืองข้อมูลen_US
Appears in Collections:Proceedings of the 14th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
npru-87.pdf257.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.