Please use this identifier to cite or link to this item: https://publication.npru.ac.th/jspui/handle/123456789/1650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuntamoon, Siripun-
dc.contributor.authorHengpraprohm, Supoj-
dc.contributor.authorHengpraprohm, Kairung-
dc.date.accessioned2022-08-18T17:10:09Z-
dc.date.available2022-08-18T17:10:09Z-
dc.date.issued2022-07-08-
dc.identifier.urihttps://publication.npru.ac.th/jspui/handle/123456789/1650-
dc.description.abstractThis research aims to Study and develop a Bitcoin price forecasting model using data mining techniques including Linear Regression, Moving Averages, Logistic Regression and Exponential Smoothing. Using Bitcoin price data from January 1, 2021 to December 31, 2021, the data has 6 attributes: Day/Month/Year, Open Price, Highest Price of the Day, Price. the day's low, the day's trading volume and the percentage change from the previous day's closing price. The results showed that Exponential smoothing techniques is most suitable The model performance for the Train dataset yielded Root Mean Square Error : RMSE of 0.10047164 and Mean Absolute Error : MAE of 0.07726155. For the Test data set, the square root of the mean squared error was 0.05091178 and the mean absolute deviation was 0.04143874. moving average Logistics regression analysis and exponential smoothingen_US
dc.publisherThe 14th NPRU National Academic Conference Nakhon Pathom Rajabhat Universityen_US
dc.subjectBitcoinen_US
dc.subjectData Mining Techniquesen_US
dc.subjectMoving Averagesen_US
dc.subjectForecasten_US
dc.titleBitcoin Price Forecasting Using Data Mining Techniquesen_US
dc.title.alternativeการพยากรณ์ราคา บิตคอยน์ ด้วยเทคนิคการทำเหมืองข้อมูลen_US
Appears in Collections:Proceedings of the 14th NPRU National Academic Conference

Files in This Item:
File Description SizeFormat 
npru-70.pdf287.13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.