NSUTEANIINTTLAVYIR AT 14 U Ineqeswiguasugy

7-8 ningAN 2565

Testing the Coefficient of Variation for the Inverse Gamma Distribution:

A Case Study of the Annual Rainfall Amounts in Lampang, Thailand

Wararit Panichkitkosolkul*”

1Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,
Pathumthani 12121, Thailand

*wararit@mathstat.sci.tu.ac.th
Abstract

Two test statistics for testing the coefficient of variation in an inverse gamma distribution were proposed
in this study. The proposed test statistics were based on the score and Wald methods. An evaluation of the
performance of the proposed test statistics using Monte Carlo simulations was conducted under several shape
parameter values in an inverse gamma distribution. The performances of the test statistics were compared
based on the empirical type | error rates and the powers of the tests. The simulation results revealed that the
test statistics based on the Wald method performed better than the test statistics based on the score method
in terms of the attained nominal significance level and is thus recommended for analysis in similar scenarios.

The efficacies of the proposed test statistics were also illustrated by applying them to annual rainfall amounts

in Lampang, Thailand.

Keywords: statistical test, measure of dispersion, continuous distribution, type | error rate, powers of the test

1. Introduction

The coefficient of variation (CV) is a unit-free measure of variability relative to the population mean [1].
It is defined as the ratio of the population standard deviation o to the population mean x, namely 8 =o'/ 4,
where u #0. It has been more widely used than the standard deviation for comparing the variations of several
variables obtained by different units. The estimator of the CV has been widely applied in many fields of science,
including the medical sciences, engineering, economics and others (see Nairy and Rao [2]). For example, the
applicability of the CV method for analyzing synaptic plasticity was studied by Faber and Korn [3]. Calif and
Soubdhan [4] used the CV to measure the spatial and temporal correlation of global solar radiation. Reed et
al. [5] used the CV in assessing the variability of quantitative assays. Bedeian and Mossholder [6] used the CV

for comparing diversity in work groups. Kang et al. [7] applied the CV for monitoring variability in statistical
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process control. Castagliola et al. [8] proposed a new method to monitor the CV by means of two one-sided
exponentially weighted moving average charts of the CV squared. Déring and Reckling [9] proposed a method
to adjust the standard CV to account for the systematic dependence of population variance from the
population mean.

In probability and statistics, the inverse gamma distribution is a two-parameter family of continuous
distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed
according to the gamma distribution [10]. The inverse gamma distribution is most often used as a conjugate
prior distribution in Bayesian statistics. There are several research papers to study the distribution of the inverse
gamma. For example, Gelman [11] applied inverse gamma distribution as the prior distributions for variance
parameters in hierarchical models. Abid and Al-Hassany [10] studied some issues related with inverted gamma
distribution which is the reciprocal of the gamma distribution. Llera and Beckmann [12] introduced five different
algorithms based on method of moments, maximum likelihood method and Bayesian method to estimate the
parameters of inverted gamma distribution. Glen and Leemis [13] studied the inverse gamma distribution as a
survival distribution.

The literature on testing the CV for the inverse gamma distribution is limited. However, there are many
methods available for estimating the confidence interval for a population CV of the inverse gamma distribution.
Kaewprasert et al. [14] presented three confidence intervals for the CV of the inverse gamma distribution using
the score method, the Wald method and the percentile bootstrap confidence interval. These confidence
intervals for the CV can be used to test the hypothesis for the CV.

The objective of this paper is to propose some methods for testing the CV for the inverse gamma
distribution and identify the appropriate methods for practitioners. Two confidence intervals proposed by
Kaewprasert et al. [14] are considered in order to test the population CV. A simulation study was conducted to
compare the performance of these methods. Based on the simulation results, test statistics with high power
that attained a nominal significance level are recommended for practitioners.

The structure of this paper is as follows. The point estimation of parameters in an inverse gamma
distribution are reviewed in the Section 2. In Section 3, we present the proposed methods for testing the CV of
the inverse gamma distribution. The simulation study and results are discussed in Section 4. Section 5 shows
the application of the proposed statistical tests to real data is shown using the annual rainfall amounts in

Lampang, Thailand. Discussion and conclusions are presented in the final section.

2. Point Estimation of Parameters in an Inverse Gamma Distribution
In this section, we explain the point estimation of parameters in an inverse gamma distribution.
Let X,,....X, be a random sample from the inverse gamma distribution with the shape parameter «

and scale parameter g, denoted as IG(«, ). The probability density function of X is given by
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f(X;a,ﬂ):r"E;) x ! exp(—éj, x>0, a>0, f>0. (1)

The population mean and variance of X are defined as

E(X)= s , for a>1

a-1
ﬂZ
and Var(X)=————, for a>2.
(a-D(a-2)
Therefore, the CV of X can be expressed as
1
Ja-2'

Since « is an unknown parameter, it is required to be estimated. The maximum likelihood estimators

CV(X)=0=

(MLE) for @ and g are considered. From the probability density function shown in (1), the log-likelihood

function of @ and g is given by

i=1 i=l

InL(a, p) = —Zn:[xﬁJ —(a+ l)iln(xi )—-nInT'(a)+na In(p).

Taking partial derivatives of the above equation with respect to « and f, respectively, the score function is

derived as
Zn:ln(xi)—nln(a)+2l—nln(ﬂ)
U, p="" " na
Y X
25

Then, the maximum likelihood estimators can be conducted for ¢ and g, respectively,

. 1 P na
o= , and ﬂ:n—

> in(X;) X! X!
2| = +1In| = =
n n

1

a-2

Also, the estimator of CV is given by 0=

3. Methods for Testing the Coefficient of Variation of the Inverse Gamma Distribution

Let X,,..,X, be an independent and identically distributed (i.i.d.) random sample of size n
from the inverse gamma distribution with the shape parameter « and scale parameter f. We want to
test for the population CV. The null and alternative hypotheses are defined as follows:

H,:0=6, versus H,:0=6,.

In this section, we discuss two test statistics for the CV based on the score method and the Wald method.

1) Score method

Let @ and B be the parameter of interest and the nuisance parameters, respectively. In general, the

score statistic is denoted as
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W, =UT (@, )1 (@, BV (. ),
where £, is the maximum likelihood estimator for A, under the null hypothesis H, :a =a,, U(a,,/,) is the

vector of the score function and 1(,,/3,) is the matrix of the Fisher information. Here, it is easy to derive that

the score function under H, is

—Zln(xi)+2i—n1n _
U(aoaﬁo) = = % Z Xi71
i-1

0
The inverse of the matrix of the Fisher information can be derived as follows

20, 3 20,
n "y -
X
2

3 20, na,(2a, -1) |

n 2
X [Sy
Rty

Using the property of the score function, we can see that the pivotal
20 | &
Z oo = 22| =3 In(X,) + =+ nIn| — )
n i-1 2a, z X!
i=l I

. 2 -
converges in distribution to the standard normal distribution. Since the variance of a is ﬂ, it is
n

1 (. By) =

approximated by substituting & in its variance. Under H{, the statistic in (2) is given as

) n
Z,.. = /2“ =3 (X)) +—e+nin| —
n i=1 2a ZX_-l

From the probability statement,

1_}/ = P(_Zl—y/z < Zscore < Zl—y/z)’
it can be simply written as
1-y=P(, <0 <u,).
Therefore, the (1-y)100% confidence interval for € based on the score method is given by
1 1
Clg =[l,,u ] = , ,

n 2 n _2

/ n n
Z(ZI—ZW2 WJ 2(21+Zﬂ2 M{ZJ

and Z,, is the y/2-upper quantile of the standard normal distribution.

where 7, = In(X;)—nln

i=1 i Xi—l
o1

Therefore, we will reject the null hypothesis, H,:6 =6,, if
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2) Wald method
The Wald statistic is an asymptotic statistic derived from the property of the maximum likelihood
estimator. The general form of the Wald statistic under the null hypothesis H, :a = ¢, is defined as
A -1 R
W, =(@-a,) [1”(@.B)] (@-a,),
where 19“(&, B) is the estimated variance of & obtained from the first row and the first column of 17'(&, A).

Using the information of partial derivatives from the previous subsection, the inverse matrix is given by

[ 242 28

n Z”: X
i=1

_2&° naQa-)) |
n 2
X! [y
Rl
A2

% Therefore, under H,, we obtain the Wald statistic

Zwald = 1/%(& - a)a (3)

which has the limiting distribution of a standard normal distribution. Thus, the (1-y)100% confidence interval

NCHHE

where 19(&, B) =

for 6 based on the Wald method is given by
1 1

Cly =[l,.u,]= = =
N 2a R 2a
\/a—2+ZW2\/ . \/a—Z—sz

n

where Z , is the y/2-upper quantile of the standard normal distribution. Therefore, we will reject the null

hypothesis, H,:0=6,, if

6, <

! or 6,> ! .
. 24&° . 24&°
a-2+2,, . a-2-2,, .

4. Simulation Study and Results

In this study, two statistical methods for testing the population CV in an inverse gamma distribution
are considered. Since a theoretical comparison is not possible, a Monte Carlo simulation was conducted using
the R version 4.1.3 statistical software [15] to compare the performance of the test statistics. The methods were
compared in terms of their attainment of empirical type | error rates and the powers of their performance. The
simulation results are presented only for the significant level y =0.05, since a) y =0.05 is widely used to

compare the power of the test and b) similar conclusions were obtained for other values of .

436

w319 Innovation and Technology Liesessudsnslnegdan Digital World




437

N5UTEININTTLAVYIR AT 14 i Ineaeswiguasugy

7 -8 ningAN 2565

To observe the behavior of small, moderate and large sample sizes, we used n = 25, 50, 75, 100 and
200. The number of simulations was fixed at 10,000. The data were generated from an inverse gamma
distribution with =1 and « was adjusted to obtain the required coefficient of variation 6. We set 8 =0.05,
0.10, 0.15, 0.20, 0.25, 0.30 and 0.35.

As can be seen in the simulation results displayed in Tables 1-7, the empirical type | error rates of the
Wald method were close to the nominal significance level of 0.05 for all sample sizes while those of the score
method were close to the nominal significance level of 0.05 for larger sample sizes. The score method
performed well in terms of the power of the test for 8 < @,. On the other hand, the Wald method performed
better for > 6,. We observed a general pattern; when the sample size increases, the power of the test also
increases and the empirical type | error rate approaches 0.05. Also the power increases as the value of the CV
departs from the hypothesized value of the CV. It was observed that for large sample sizes, the performance
of the test statistics did not differ greatly in the sense of power and the attainment of the nominal significance

level of the test. However, a significant difference was observed for small sample sizes.

Table 1. Empirical type | error rates (under line) and powers of tests for 1G(402, 1), 8 =0.05.

n | Method )
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

25 Score 1.0000 | 0.9974 | 0.6767 | 0.0568 | 0.1125 | 0.4796 | 0.8607 | 0.9850 | 0.9989
Wald 1.0000 | 1.0000 | 0.9423 | 0.4102 | 0.0383 | 0.1088 | 0.4081 | 0.7516 | 0.9406
50 Score 1.0000 | 1.0000 | 0.9887 | 0.3329 | 0.0790 | 0.6190 | 0.9738 | 0.9998 | 1.0000
Wald 1.0000 | 1.0000 | 0.9983 | 0.6442 | 0.0446 | 0.3042 | 0.8535 | 0.9943 | 0.9999
75 Score 1.0000 | 1.0000 | 0.9998 | 0.5840 | 0.0742 | 0.7498 | 0.9956 | 1.0000 | 1.0000
Wald 1.0000 | 1.0000 | 1.0000 | 0.8026 | 0.0472 | 0.4971 | 0.9747 | 1.0000 | 1.0000
100 | Score 1.0000 | 1.0000 | 1.0000 | 0.7624 | 0.0693 | 0.8292 | 0.9997 | 1.0000 | 1.0000
Wald 1.0000 | 1.0000 | 1.0000 | 0.8954 | 0.0485 | 0.6434 | 0.9973 | 1.0000 | 1.0000
200 | Score 1.0000 | 1.0000 | 1.0000 | 0.9838 | 0.0618 | 0.9739 | 1.0000 | 1.0000 | 1.0000
Wald 1.0000 | 1.0000 | 1.0000 | 0.9938 | 0.0484 | 0.9406 | 1.0000 | 1.0000 | 1.0000

5. An Empirical Application

To illustrate the application of the two statistical methods for testing the CV introduced in the previous
section, we used data on the annual rainfall amounts (millimeter: mm.) obtained from Upper Northern Region
Irrigation Hydrology Center, Royal Irrigation Department, Thailand (https://www.hydro-1.net). The annual rainfall
amounts were measured from the station at Kiew Lom Dam, Mueang District, Lampang, Thailand from 1992 to
2016. The descriptive statistics are as follows: sample size = 25, mean = 1186.97, standard deviation (SD) =
267.33, CV = 0.225, coefficient of skewness = 0.381, and kurtosis = -0.575. The distribution of the annual rainfall

amount is slightly right-skewed and it has light tailed data distribution.
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Table 2. Empirical type | error rates (under line) and powers of tests for IG(102, 1), 8 =0.10.

n Method )
0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

25 Score 0.6696 | 0.2744 0.061 0.0413 | 0.1155 | 0.2711 | 0.4674 | 0.6806 | 0.8383
Wald 0.9417 | 0.7357 0.3994 0.1433 | 0.0431 | 0.0483 | 0.1055 | 0.2268 | 0.3772
50 Score 0.9853 | 0.7963 0.3257 0.0583 | 0.0820 | 0.2996 | 0.6087 | 0.8623 | 0.9722
Wald 0.9977 | 0.9455 0.6460 0.2192 | 0.0432 | 0.0962 | 0.2933 | 0.5913 | 0.8365
75 Score 0.9996 | 0.9561 0.5740 0.1078 | 0.0680 | 0.3319 | 0.7339 | 0.9436 | 0.9948
Wald 1.0000 | 0.9883 0.7927 0.2888 | 0.0420 | 0.1454 | 0.4792 | 0.8088 | 0.9681
100 Score 1.0000 | 0.9911 0.7512 0.1785 | 0.0688 | 0.3806 | 0.8169 | 0.9816 | 0.9995
Wald 1.0000 | 0.9982 0.8867 0.3592 | 0.0469 | 0.1976 | 0.6333 | 0.9316 | 0.9967
200 Score 1.0000 | 1.0000 0.9799 0.4410 | 0.0595 | 0.5595 | 0.9690 | 0.9999 | 1.0000
Wald 1.0000 | 1.0000 0.9919 0.5863 | 0.0496 | 0.4089 | 0.9279 | 0.9992 | 1.0000

Table 3. Empirical type I error rates (under line) and powers of tests for IG(46.44, 1), 8 =0.15.

n Method b,
0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

25 Score 0.1695 | 0.0592 0.0323 0.0542 | 0.1131 | 0.1966 | 0.3222 | 0.4602 | 0.5987
Wald 0.6244 | 0.3933 0.1982 0.0933 | 0.0398 0.035 0.0559 | 0.1014 | 0.1703
50 Score 0.6296 | 0.3168 0.0985 0.0401 | 0.0794 | 0.1973 | 0.3845 | 0.5925 | 0.7685
Wald 0.8673 | 0.6352 0.3253 0.1241 | 0.0476 | 0.0580 | 0.1421 | 0.2815 | 0.4585
75 Score 0.8726 | 0.5564 0.2101 0.0549 | 0.0702 | 0.2085 | 0.4603 | 0.7160 | 0.8807
Wald 0.9595 | 0.7910 0.4546 0.1564 | 0.0446 | 0.0814 | 0.2292 | 0.4591 | 0.6954
100 Score 0.9612 | 0.7378 0.3319 0.0750 | 0.0651 | 0.2276 | 0.5131 | 0.7890 | 0.9465

Wald 0.9884 | 0.8882 0.5468 0.1856 | 0.0465 | 0.1005 | 0.3030 | 0.5954 | 0.8423
200 Score 0.9996 | 0.9757 0.6977 0.1775 | 0.0556 | 0.3102 | 0.7294 | 0.9599 | 0.9979

Wald 0.9998 | 0.9909 0.8137 0.2988 | 0.0501 | 0.1901 | 0.5836 | 0.9112 | 0.9923

Table 4. Empirical type | error rates (under line) and powers of tests for IG(27, 1), € =0.20.

n Method 6,
0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24

25 Score 0.0531 | 0.0332 | 0.0383 | 0.0683 | 0.1146 | 0.1693 | 0.2406 | 0.3386 | 0.4419
Wald 0.3825 | 0.2363 | 0.1356 | 0.0727 | 0.0421 | 0.0319 | 0.0382 | 0.0617 | 0.0920
50 Score 0.2990 | 0.1337 | 0.0525 | 0.0418 | 0.0782 | 0.1537 | 0.2766 | 0.4017 | 0.5590
Wald 0.6224 | 0.4029 | 0.2099 | 0.0950 | 0.0446 | 0.0501 | 0.0924 | 0.1523 | 0.2578
75 Score 0.5438 | 0.2697 | 0.0988 | 0.0428 | 0.0677 | 0.1550 | 0.3047 | 0.4879 | 0.6761
Wald 0.7710 | 0.5278 | 0.2700 | 0.1097 | 0.0497 | 0.0571 | 0.1323 | 0.2445 | 0.4195
100 Score 0.7210 | 0.4130 | 0.1611 | 0.0571 | 0.0616 | 0.1630 | 0.3386 | 0.5600 | 0.7552
Wald 0.8735 | 0.6327 | 0.3462 | 0.1282 | 0.0485 | 0.0642 | 0.1731 | 0.3494 | 0.5535
200 Score 09734 | 0.7889 | 0.4010 | 0.1028 | 0.0545 | 0.2039 | 0.4865 | 0.7950 | 0.9462
Wald 0.9889 | 0.8803 | 0.5573 | 0.1895 | 0.0495 | 0.1178 | 0.3402 | 0.6589 | 0.8870
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Table 5. Empirical type | error rates (under line) and powers of tests for IG(18, 1), 8 =0.25.

n Method )
0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

25 Score 0.0352 | 0.0382 0.0506 0.0758 | 0.1106 | 0.1547 | 0.2170 | 0.2716 | 0.3413
Wald 0.2629 | 0.1754 0.1032 0.0624 | 0.0429 | 0.0357 | 0.0362 | 0.0456 | 0.0604
50 Score 0.1462 | 0.0732 0.0422 0.0469 | 0.0812 | 0.1281 | 0.2077 | 0.2975 | 0.4174
Wald 0.4259 | 0.2649 0.1522 0.0771 | 0.0481 | 0.0400 | 0.0582 | 0.1007 | 0.1570
75 Score 0.2985 | 0.1510 0.0655 0.0419 | 0.0643 | 0.1278 | 0.2174 | 0.3480 | 0.4903
Wald 0.5519 | 0.3563 0.1932 0.0920 | 0.0489 | 0.0548 | 0.0866 | 0.1552 | 0.2465
100 Score 0.4550 | 0.2387 0.1030 0.0483 | 0.0624 | 0.1222 | 0.2478 | 0.3960 | 0.5687
Wald 0.6750 | 0.4437 0.2388 0.1007 | 0.0471 | 0.0572 | 0.1131 | 0.2112 | 0.3529
200 Score 0.8313 | 0.5555 0.2471 0.0767 | 0.0538 | 0.1425 | 0.3322 | 0.5845 | 0.7888
Wald 0.9061 | 0.7046 0.3856 0.1425 | 0.0529 | 0.0780 | 0.2056 | 0.4227 | 0.6513

Table 6. Empirical type I error rates (under line) and powers of tests for IG(13.11, 1), 8 =0.30.

n Method b,
0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34

25 Score 0.0324 | 0.0431 | 0.0594 | 0.0784 | 0.1094 | 0.1444 | 0.1834 | 0.2214 | 0.2787
Wald 0.1879 | 0.1306 | 0.0915 | 0.0557 | 0.0429 | 0.0328 | 0.0308 | 0.0345 | 0.0457
50 Score 0.0858 | 0.0535 | 0.0427 | 0.0534 | 0.0736 | 0.1136 | 0.1653 | 0.2352 | 0.3164
Wald 0.2997 | 0.2058 | 0.1178 | 0.0717 | 0.0481 | 0.0410 | 0.0513 | 0.0759 | 0.1034
75 Score 0.1832 | 0.0934 | 0.0534 | 0.0426 | 0.0623 | 0.1103 | 0.1775 | 0.2544 | 0.3573
Wald 0.4103 | 0.2550 | 0.1497 | 0.0818 | 0.0511 | 0.0474 | 0.0676 | 0.1048 | 0.1649
100 Score 0.2806 | 0.1494 | 0.0678 | 0.0442 | 0.0603 | 0.1024 | 0.1809 | 0.2853 | 0.4150
Wald 0.5001 | 0.3153 | 0.1690 | 0.0878 | 0.0497 | 0.0474 | 0.0816 | 0.1320 | 0.2227
200 Score 0.6430 | 0.3718 | 0.1668 | 0.0652 | 0.0517 | 0.1115 | 0.2307 | 0.4030 | 0.5970
Wald 0.7682 | 0.5246 | 0.2832 | 0.1242 | 0.0513 | 0.0618 | 0.1361 | 0.2686 | 0.4456

Table 7. Empirical type | error rates (under line) and powers of tests for 1G(10.16, 1), @ =0.35.

n Method 6,
0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

25 Score 0.0390 | 0.0437 | 0.0677 | 0.0855 | 0.1105 | 0.1273 | 0.1599 | 0.2032 | 0.2378
Wald 0.1433 | 0.1077 | 0.0822 | 0.0600 | 0.0435 | 0.0375 | 0.0335 | 0.0334 | 0.0375
50 Score 0.0618 | 0.0454 | 0.0413 | 0.0535 | 0.0700 | 0.1081 | 0.1438 | 0.1948 | 0.2392
Wald 0.2292 | 0.1512 | 0.0991 | 0.0653 | 0.0463 | 0.0434 | 0.0444 | 0.0610 | 0.0761
75 Score 0.1205 | 0.0697 | 0.0464 | 0.0443 | 0.0619 | 0.0969 | 0.1373 | 0.1968 | 0.2719
Wald 0.3080 | 0.1971 | 0.1226 | 0.0778 | 0.0496 | 0.0471 | 0.0497 | 0.0735 | 0.1128
100 Score 0.1849 | 0.1015 | 0.0578 | 0.0479 | 0.0591 | 0.0903 | 0.1488 | 0.2144 | 0.3023
Wald 0.3723 | 0.2356 | 0.1424 | 0.0845 | 0.0518 | 0.0478 | 0.0617 | 0.0976 | 0.1474
200 Score 0.4521 | 0.2650 | 0.1271 | 0.0573 48 0.0859 | 0.1653 | 0.2893 | 0.4324
Wald 0.6052 | 0.4072 | 0.2285 | 0.1079 .0524 | 0.0541 | 0.0913 | 0.1750 | 0.2854
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The histogram, density plot, Box and Whisker plot and the inverse gamma quantile-quantile (Q-Q) plot
are shown in Figure 1. They confirmed that the fitted distribution for annual rainfall amounts are not symmetric
distribution. Table 8 reports the Akaike information criterion (AIC) [16] results to check the fitting of the
distribution for the annual rainfall amounts in Lampang. AIC is defined as AIC =—-2InL+2k, where L is the
likelihood function and k is the number of parameters. The results show that the annual rainfall amounts in
Lampang had an inverse gamma distribution because the AIC value of the inverse gamma distribution was
smallest. However, the AIC values of the normal and the inverse gamma distributions are similar but the inverse
gamma distribution is more suitable. The reason is that the annual rainfall amounts are the positive values. The
annual rainfall amounts in Lampang had an inverse gamma distribution with a shape parameter, a = 20.4747
and a scale parameter, ﬂ =23146.24, while the estimator of the CVis 8 =0.2327 using the maximum likelihood
estimation.

Our interest was in testing the population CV of the annual rainfall amounts in Lampang. Suppose the
researcher wanted to test the claim that a population CV equals 0.25. The null and alternative hypotheses are
respectively given as follows: H,:6=0.25 versus H,:6#0.25.

The lower and upper critical values of both test statistics were shown in Table 9. The null hypothesis

H, was not rejected since 0.1509<6, <0.2992 and 0.1831< 6, <0.3747 using test statistics based on the
Score and Wald methods, respectively. We conclude that the population CV of the annual rainfall amounts in
Lampang does not differ from 0.25 at the 0.05 significance level. Namely, the population standard deviation of

annual rainfall amounts is around 0.25 times the population mean.

(a) (b)

Frequency
Density
0.0000 0.0006 0.0012

- ]

T T T T T T 1 T T T T
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Annual rainfall Annual rainfall
(c) 8 (d)
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g 5§ 87
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Figure 1. (a) histogram (b) density plot (c) Box and Whisker plot (d) inverse gamma Q-Q plot of

the annual rainfall amounts in Lampang, Thailand
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Table 8. Results of AIC for the annual rainfall amounts in Lampang, Thailand

Normal

Cauchy

Exponential

Weibull

Gamma

Inverse Gamma

353.3512

419.6644

470.7903

407.9166

405.7664

352.4116

Table 9. Critical values of test statistic based on the score and Wald methods at the 0.05 significance level

Method Critical values
Lower Upper
Score 0.1509 0.2992
Wald 0.1831 0.3747

6. Discussion and Conclusions

The aim of this study is to identify potential methods that can be recommended to practitioners for
testing the CV in an inverse gamma distribution. A general pattern was observed (as expected); as the sample
size increased, the power of the test also increased and the empirical type | error rates approached 0.05.
Moreover, the power increased as the value of CV departed from the hypothesized value of the CV. It can be
observed that for large sample sizes, the performance of both methods did not differ greatly in terms of the
power and attaining the nominal size of the test. However, a significant difference was observed for small
sample sizes. In addition, the researchers can applied the proposed methods for testing the population CV in
an inverse gamma distribution with other data sets fitted well to an inverse gamma distribution. For example,
the inverse gamma distribution has been used for the hitting time distribution of a Wiener process. Future
research could focus on the one-tailed hypothesis testing.

In this study, two statistical methods for testing the population CV in an inverse gamma distribution
were derived. Based on the simulation results, it is evident that the Wald method performed better than the
score method in terms of the empirical type | error rate. The score method performed well in the sense of the
power of the test when the population CV was smaller than the hypothesized value of the CV. On the other
hand, the Wald method performed better when the population CV was greater than the hypothesized value
of the CV. In summary, we would recommend the Wald method for testing since its empirical type | error rate

is close to the nominal significance level.
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