
The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 53

A Multi-agent Approach for Semantic Annotation of Source Code Artefact

Pornpit Wongthongtham1,* Udsanee Pakdeetrakulwong2,* Suksawat Sae-Lim2, Worachet
Uttha2, Sutarat Chaonafang2, Suphitcha chanrueang2, Supakit Nakpomchin2, Somkiat

Chormuan2, Naruapon Suwanwijit2

1School of Information Systems, Curtin University, Western Australia, Australia
2Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand

Abstract

 A large volume of software project information is produced in software projects. Manually transforming
or mapping them into a semantically rich form for shared understanding is time-consuming, laborious, tedious
and prone to error. Hence, it is important to use a systematic approach to automate the knowledge capture of
software project information. In this paper, the active Software Engineering Ontology through Multi-agent
System (SEOMAS) approach for automated knowledge capture of software project information is proposed.
The agents utilise the Software Engineering Ontology (SE Ontology) to capture knowledge from software
development artefacts during the daily software development activity. The captured knowledge is populated as
new instances in the SE Ontology repository to allow project team members and software agents to access it. It
has been demonstrated that the captured knowledge can be put to practical use to clarify any ambiguity in
remote communication and to facilitate effective and efficient coordination and knowledge sharing within a
software development project.

Keywords: Multi-agent, Ontology, Software Development

1. Introduction
 Various types of software project information produced throughout the software development life cycle
describe different levels of abstraction and perspectives of a software system. Nonetheless, they are in syntactic
format that does not facilitate the understanding of the concepts or meaning. The syntactic representation of
software project information produces several issues such as ambiguities, difficulty in data integration,
limitation of information retrieval, etc. These problems are more significant in a multi-site software
development environment where project team members are dispersed across several locations and face-to-face
communication (e.g., formal or information meeting) is limited. As a result, software project information should
be transformed into semantic representation to alleviate the aforementioned issues. Some existing approaches
have been introduced to capture the semantics of a software project. However, many of them are based on
manual approaches or require effort from project team members to carry out additional steps in the knowledge
capturing process because they are not integrated in a software development process. The manual capturing of
knowledge of software project information is time-consuming, labour-intensive, tedious and error-prone task. In
order to tackle these issues, there is the need for a systematic approach that can automatically capture
knowledge of software project information and that is seamlessly integrated in a software development process.
Once this information has been captured and conceptualised, it can be semantically interlinked with other
relevant information. It can then be used to clarify any ambiguity in communication and to enable knowledge
sharing among team members. This knowledge is also in machine-readable format which means that it can be
understood by software agents. As a result, the agents can make use of this knowledge to assist project teams
with their software development activities such as managing project issues, monitoring software project status,
suggesting solutions or experts.

2. Materials and methods
2.1. Related works
 Knowledge assimilation is the process of capturing and representing the domain-specific knowledge in
a formal conceptual model [1]. When large amounts of knowledge need to be captured, an important point is the
assimilation of extracted knowledge by means of systematic approaches that do not require great amount of
human effort. The captured knowledge can be conceptually represented using the ontological model. In the

* Corresponding author; e-mail: 1*ponnie.clark@curtin.edu.au, 2*udsanee@webmail.npru.ac.th

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 54

literature, several studies have proposed the use of ontology-based semantic annotation, or semantic annotation
for short, to express a formal representation of the resource’s content by connecting it to concepts defined in an
ontology. In the software development domain, the semantic annotation process is used to tackle problems
regarding inappropriate, incomplete, and inconsistent syntactic descriptions of software development artefact
properties and qualities. Qiang, Ming and Zhiguang [2] implement a semantic annotation-based software
knowledge-sharing space to improve the level of knowledge sharing and facilitate collaborative work among
project members. Ontologies are used to create a link between software artefact contents and the abstract
knowledge in the space. However, the annotation process is done manually by team members. Zygkostiotis,
Dranidis and Kourtesis [3] propose a manual approach to semantically annotate Java source code using domain
ontologies for the purpose of software reuse. This approach makes use of the standard annotation facility
equipped with the release of Java 5.0 to add metadata to source code elements. In [4], the authors discuss the use
of semantic annotations in requirements document templates to support the management and evolution of
requirements. The semi-automatic annotation process is based on the conceptualisation captured in the defined
software requirement ontology. In [5], the authors propose KnowBench, a semantic-based knowledge
management system to assist developers to reuse code or knowledge about solving problems that had been
previously addressed in the organisation. The source code is captured by means of both manual and semi-
automatic annotation. Damljanovic, Amardeilh and Bontcheva [6] introduce an automatic approach to enhance
semantic access to software artefacts (e.g., software document, source code) using the semantic annotation
process. This approach is based on the text analysis technique. Taglialatela and Taglino [7] propose an approach
to enrich the semantic description of source code by semantically annotating it with a common domain
ontology. The goal is to develop a semantic-based search and retrieval of software artefacts in order to facilitate
software reuse. The annotation mechanism is based on the analysis of the source code comments which are
added by a developer. The annotation process is automatic. However, the quality of the annotation result
depends on the quality of the code comments. Tichy, Köerner and Landhäußer [8] propose an approach to
automatically create software models from natural language texts with semantic annotation. In [9], the authors
present a concept whereby automated software composition is supported by semantic modelling and making use
of the annotation process and semantic extensions through knowledge-based techniques.

In the literature review, a significant amount of research contains proposals for semantically annotating
software project-related information. A number of works have contributed to source code semantic annotation.
However, most of the reviewed approaches are based on manual and semi-automatic annotation. The manual
approaches are considered inappropriate because they are tedious, time consuming, and error-prone, especially
when a large volume of software artefacts is generated within a project. The semi-automatic annotation
approaches can be a good solution; however, they still require human intervention at some annotation level.
Some works have proposed the automatic approach. However, most of them are based on text analysis
techniques so that they are applicable only to textual artefacts (e.g., software requirement specification, software
documents); they are not suitable for the semantic annotation of certain types of artefacts such as source code. In
addition, most of the reviewed works regarding semantic annotation approaches in the software engineering
domain focus only on semantic annotation which is intended to create semantic descriptions of software
resources. Fewer works have paid attention to populating the ontology which is the task of adding new instances
of concepts to the ontology. The new instances could be derived from the semantic annotation.

2.2. Conceptual framework

Because software development-related information generated within a software project is in syntactic
form, its structure is not conducive to an understanding of the semantics, and therefore may create ambiguities
(e.g. incorrect or different interpretations). Source code is considered as the main, centrally located artefact and
is critical in software development; therefore, the need to capture its semantics in order to facilitate remote
communication, coordination and knowledge sharing is obvious. Hence, given the volume of source code that
needs to be dealt with, it is imperative to have a systematic approach for automating semantic annotation and
ontology population tasks to ease the burden of manual tasks. This approach should be automated, or should
require minimum human effort. In this paper, the SEOMAS framework is proposed. The agent annotates
software project information according to the corresponding concepts and then generates new instances which
are subsequently populated into the ontology repository. The aforementioned processes can be done by software
agents with minimum human intervention. In addition, the utilisation of agents can speed up the process because
they are able to act in parallel. To sum up, an ontology-based multi-agent approach will encourage team
members to share their knowledge by offering automated and transparent support to semantically capture
software project information when they are working on software development process. In this work, the Agent
Unified Modelling Language (AUML), a standard representation by FIPA to describe agent communication and
protocols [10, 11] has been chosen as an appropriate methodology to capture agent concepts and their
interactions. The proposed framework is intended to provide active support to assist software team members

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 55

with software engineering knowledge when they are working on multi-site distributed software development
projects. It comprises four agent types with brief descriptions of their roles as follows.

 User agent (UA) is a mediator between a user and the system. A user employs his/her user agent to
perform tasks on his/her behalf.

 VersionControl agent (VA) is responsible for managing the version control repository. In this
research, this agent focuses on the import of new source code file(s) into the version control repository.

 Annotation agent (AA) is responsible for annotating software project information that is imported into
the version control repository.

 Ontology agent (OA) is responsible for accessing and manipulating the SE Ontology domain and
instance knowledge. It also manages the ontology population according to the semantic annotation
process.
In order to summarise the semantic annotation and the ontology population process performed by the

SEOMAS agents as described above, the whole process is shown graphically in Figure 1.

Figure 1 The automated knowledge capture by the SEOMAS approach

Due to space constraint, it is not practical to describe the complete internal aspect model of all agents.
In this paper, the internal model of the annotation agent is chosen to be refined as followed.

The annotation agent is mainly responsible for semantically annotating software project information
(i.e., source code artefact). It responds to an annotation request from the versioncontrol agent by carrying out a
semantic annotation process in order to identify new instances of the Software Engineering Ontological concepts
from the source code artefacts. The role associated with this agent is SemanticAnnotator. The SemanticAnnotator
role is to semantically annotate source code artefacts with the appropriate concepts defined in the SE Ontology.
The annotation agent fulfils its role with two main behaviours: IdentifySourceCodeKeyConcepts and
AnnotateSourceCode.

2.2.1 IdentifySourceCodeKeyConcepts behaviours
An incoming request for source code annotation from a user agent is managed by the

IdentifySourceCodeKeyConcepts behaviour. Two main steps are performed after a request has been identified:
1) Source code retrieval

 This step is to retrieve the requested source code file from the version control repository.
2) Key concept identification

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 56

 This step is to identify the key concepts that are being used in the source code. The source code is
analysed and parsed to produce an abstract syntax tree (AST) which is a representation of the abstract syntactic
structure of the source code written in a programming language, for example, classes, fields, methods,
constructors, parameters as well as in-line comments (e.g., JavaDoc). For source code comments such as author,
versions are also identified and parsed in order to obtain a meaningful term-based description of the source code.

2.2.2 AnnotateSourceCode behaviours

After the IdentifySourceCodeKeyConcepts behaviour accomplishes its task of key concept identification, the
AnnotateSourceCode behaviour is initialised as indicated in the pre-condition [sourcecodeIdentified]. It annotates
the source code elements with the appropriate concepts defined in the SE Ontology and other well-known
ontologies and vocabularies, as well as to enrich and to interlink the annotated source code with similar concepts
in other datasets (Figure 6-14). This behaviour comprises two main tasks:

1) Source code annotation
The identified source code elements and other software artefacts are assigned software engineering

domain concepts that correspond to their semantic description specified in the SE Ontology. Examples of these
concepts are Class, Field, Method, Parameter, Modifier, etc. The source code elements that are assigned to those
concepts are used to construct statements in the format of RDF/OWL triples which comprise three elements,
namely, subject, predicate, and object (subject, predicate, object). The subject part identifies the thing that the
statement is about. The predicate part identifies the property or characteristic of the subject that the statement
specifies. The object part identifies the value of the property or characteristic [12]. The RDF/OWL statement can
be used to semantically describe:

 resource type of the source code elements such as (HelloWorld, type, Class),
 attribute of the source code elements such as (HelloWorld, isMainClass, “True”), or

to define the relationship between source code elements such as (HelloWorld, hasMethod,
main).

2) Enrichment and Interlinking
Other relevant domain ontologies and controlled vocabularies, namely, FOAF, DC, SKOS, SIOC are

reused to enrich and interlink the semantic description of the annotated source code. For example, all the source
code elements (e.g., class, package, interface, etc.) are annotated with the relationship rdf:type as Dublin Core

Metadata Initiative (DCMI) Type ‘Software’1. If the name of an author is available in the source code, then this
relationship is defined in the resulting RDF/OWL triple by using foaf:name. The use of existing domain
ontologies can enhance the re-useability factor and promote data interoperability [13] as well as help to find
semantic similarities with other similar entities described in different semantic repositories. Interlinking also
includes the construction of semantic relationships between the annotated source code elements and other entities
defined in other dataset on the Web, namely, Wikipedia. In other words, interlinking can enable extensive textual
information related to the annotated source code elements or other project-related resources to be retrieved from
the Wikipedia website. To extract structured information from Wikipedia and then transform it into RDF,
DBpedia has been developed by the research community. The URI according to the format
http://dbpedia.org/resource/Name corresponds with the URL of the source Wikipedia article, which has the
pattern http://en.wikipedia.org/wiki/Name [14]. The annotation agent interlinks the annotated source code
elements with the corresponding DBpedia entity by using the owl:sameAs property. This property is used to
specify that the URIs of the annotated elements and those of DBpedia actually refer to the same entities. After the
source code has been annotated with the SE Ontology domain concepts as well as enriched and interlinked with
other ontologies and controlled vocabularies, the ontology agent inserts the annotated source code into the
ontology as new instances.

3. Result and discussion

3.1. Prototype Implementation and Results

The prototypes are used as proof-of-concept experiments of the proposed framework. Java source code is
selected for a proof-of-concept implementation. Jena, a Java framework for building Semantic Web
applications, is used to make a connection between agents and the SE Ontology and to provide several
functionalities such as create, read, modify triples in RDF/OWL. Qdox is used as a parser for the extraction of
source code elements. JADE, Java Agent Development Framework [17], which is an agent middleware, is
chosen to implement the agent platform and to provide a development framework. JADE is developed from
Java and is completely based on the Foundation for Intelligent Physical Agents (FIPA) specifications [18].
Agent Communication Language (ACL) defined by FIPA is chosen as the language of communication between

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 57

agents. JADE provides various implemented FIPA-specified interaction protocols such as FIPA-Query, FIPA-
Request and so on to construct agent conversation messages. JADE helps to integrate ontologies to represent
the application domain through its content reference model [19]. The SE Ontology is registered to this model
through the ontological elements, namely, predicates, concepts, and agent actions so that it can be accessed by
JADE agents and used as the content of an ACL message.

The SEOMAS agents populates the SE Ontology by inserting new instances derived from the semantic
annotation process into the ontology repository. For example, the Java source code, BankAccount.java2 is
semantically annotated and identified as instances of ClassType (Class), Constructor, and Method. In addition,
because the BankAccount instance is enriched with the Software concept of Dublin Core Metadata Initiative
(DCMI), so it is an instance of a Software class as well. The annotated source code elements are also enriched by
interlinking them with other relevant data source in order to provide an extended view of them. The annotated
Java class BankAccount is interlinked with the DBpedia dataset named http://dbpedia.org/page/Java_class_file.
The link is created by using an owl:sameAs property to specifiy that the URI of the annotated element and that of
the DBpedia dataset refer to the same resource. As a consequence, additional information about the Java class file
can be obtained or queried from DBpedia website (http://dbpedia.org). Figure 2 depicts the instances and
relationships of class BankAccount populated in the SE Ontology. The graph is generated by the OntoGraf plug-
in.

Figure 2 OntoGraf presentation of the BankAccount class instance.

The practical uses of the SEOMAS approach for evaluation purpose are based on a vehicle registration system

being developed by a multi-site team located across various sites. Software developers communicate, coordinate,
manage and share software development project information captured in the SE Ontology through the
collaborative agents during the bug resolution process. The vehicle registration system is being developed in a
multi-site software development environment. Software developers are dispersed across four sites, namely, Perth,
Bangalore, Dublin, and Shanghai. All the Java classes are annotated and populated in the SE Ontology repository

2 http://homepages.uel.ac.uk/A.Kans/pm1/week3.pdf

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 58

by means of the SEOMAS approach. They are also semantically interlinked with other relevant software project
information captured in the SE ontology, e.g., project description, project team information, source code commit,
bug reports, etc. In other words, software project-related software information will not appear in isolation, but
will be part of a large group of related information.

When Alex, a developer, requests a change to the method getMakeYear of the Vehicle interface by modifying
a method return type through the SEOMAS platform, the ontology agent can make him aware of the potential
impact to other software components. In object-oriented system development, a subclass is dependent on the
super class that it inherits or the interface that it implements; therefore, a change in the super class or the interface
will impact on its subclass. Figure 3 presents the recommendation of potentially affected artefacts sent to Alex.
MotorBike and Car class are suggested as affected classes when the getMakeYear method is modified because
they implement the Vehicle interface. VehicleRegistration is also suggested as the affected class because it is the
main call which invokes either Car or MotorBike class. Figure 4 illustrates messages sent to notify the authors of
those potentially affected artefacts to be aware of the change in the Vehicle interface. In this example, the
manipulation platform does not only assist team members to manage the software project information captured in
the Software Engineering Ontology, but it also provides useful and precise situational knowledge regarding the
change impact analysis to improve team members’ awareness and alert them to the need for coordination.

 Figure 3 Recommendation of potentially affected artefacts

 Figure 4 Messages to notify the authors of potentially affected artefacts

3.2. Evaluation
In this section, the evaluation of automated knowledge capture of source code artefacts is demonstrated

through the case study derived from [20]. Table 1 describes the bug resolution process mentioned in the case
study when the SEOMAS framework is not utilised.
Table 1 Bug resolution process described in [20]
No. Date Actor Actions

1. 3 Aug 2009 Richard@
Perth

Richard filed a bug report in the project issue tracking system with high
priority.

2. 4 Aug 2009 Richard@
Perth

Richard filed another bug report with an urgent request hoping to increase its
priority and draw greater attention from developers.

3. 4 Aug 2009 Vishay@
Bangalore

Vishay came up with a quick fix and added a comment at the end of the
report, putting the report into the status of "re-evaluation pending".

4. 11 Aug 2009 Arleno@
Shanghai

Arleno filed a duplicate bug which was soon recognized as a repeated report
two days later.

5. 15 Aug 2009 Arleno@
Shanghai

Arleno discussed with his team members and supervisor, who added
comments to the report and directed their concerns back to the Bangalore Lab

6. 17 Aug 2009 Larry@
Bangalore

Larry provided another bug fix solution

7. 17 Aug 2009 Michael@
Dublin

Michael picked up the fix and pointed out that Larry’s fix might produce
deadlocks in another related component and suggested reverting back to the
first fix.

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 59

No. Date Actor Actions
8. 18 Aug 2009 Larry@

Bangalore
Larry fixed the bug based on Michael's instruction

9. 24 Aug 2009 Michael@
Dublin

Michael checked the fix and marked the bug report status as "resolved" and
closed the bug.

10. 24 Aug 2009 Lisa@
Shanghai

Lisa suggested that the latest fix resulted in a connection timeout.

11. 25 Aug 2009 Larry@
Bangalore

Larry asked Lisa to explain the affected component

12. 25 Aug 2009 Michael@
Dublin

Michael fixed the bug, and explained his fix.

13. 29 Aug 2009 Richard@Perth Richard closed the bug as “resolved”.

Total 27 days 6 actors 13 actions

From Table 1, it can be seen that even though the bug was not too complicated and needed only a simple
modification to fix the problem, it took 27 days to finalise the resolution which might cause a project delay.
Difficulties arose from the lack of common semantics. First, the information related to the bug was dispersed
among several software repositories with no links to indicate that they were related to each other. Therefore, the
same bug report was filed repeatedly. Second, the bug was initially fixed by developers who had no expertise in
this area, resulting in several iterations of invalid fixes. Without the knowledge support to match the bug with the
expert, the bug-fixing time could be prolonged. Finally, the inadequate sharing of project information and
knowledge, such as the dependencies among software components, can delay the bug fixing. As discussed above,
Larry did not know what the affected component was, so he needed someone to clarify this information because
there was no available and explicit reference that he could access.

In order to address the abovementioned issues, software project information (e.g., source code, bug reports,
communication threads) should be captured so that software development knowledge becomes conceptualised,
organised, and can be semantically linked among related knowledge. The SEOMAS framework can help to
automate knowledge capture process by means of the semantic annotation and the ontology population tasks
which are seamlessly integrated into the software development process (e.g., version control). Once this software
project information has been captured and integrated, it is available for sharing among software project teams to
facilitate software development activities or to address project issues by, for example, assisting with a bug
resolution process as described in Table 2.
Table 2 Bug resolution process with supporting from the SEOMAS approach
No. Date Actor Actor Actions Agent Agent Actions
1. VersionControl

agent

Annotation
agent

Ontology agent

1. The versioncontrol agent imported
a new software project information
file into the version control
repository.
2. The annotation agent annotated
software development artefacts to
identify new instances.
3. The ontology agent populated the
SE Ontology with new instances.

2. 3 Aug 2009 Richard@
Perth

Before filing a bug report,
Richard checked whether the
bug had been reported
through the query platform

Richard’s user
agent

Richard’s user agent sent a query
request to the ontology agent

3. 3 Aug 2009 Ontology agent

The ontology agent retrieved existing
bug reports related to the problem
class and sent them back to the user
agent.

4. 3 Aug 2009 Richard@
Perth

Richard filed a new bug
report with high priority.

5. 3 Aug 2009 Ontology agent

The ontology agent
1. identified Michael@
Dublin as the most likely person to be
able to solve the new filed bug report;
2. attached Michael@

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 60

No. Date Actor Actor Actions Agent Agent Actions
Dublin as the potential fixer into the
bug report;
3. sent a message to notify
Michael@Dublin to draw his attention
to the new bug report that may need his
expertise to resolve.

6. 3 Aug 2009 Michael@
Dublin

Michael received a message to
notify him of a new bug report.

Michael’s user
agent

Michael’s user agent translates a
message from the ontology agent and
display to Michael

7. 3 Aug 2009 Ontology agent

The ontology agent provided Michael
with:
1. information about the problem
class and its related software compo-
nents; and
2. history of all previous bugs
reported to the problem class and how
they were fixed.

8. 4 Aug 2009 Michael@
Dublin

1. Michael fixed the bug
based on information from the
ontology agent.
2. Michael marked the bug
report status as "resolved".

9. 4 Aug 2009 Ontology agent

The ontology agent sent a message to
notify Richard that the status of the
bug had been changed to "resolved".

10. 5 Aug 2009 Richard@
Perth

Richard read the message,
verified the resolution, and
then closed the bug.

Total 3 days 2 actors 6 actions by real user 6 agents 12 actions by agents

Total number of actions 18 actions

As demonstrated in Table 2, the bug resolution process involves bug understanding, bug triage, and bug fixing

as well as additional steps to avoid the recurrence of similar bugs in the future. It is considered as one of the most
complex activities particularly in a multi-site distributed software development project because it requires
significant collaboration of information from various sources (e.g. bug reports, software components, forum
discussions) and various stakeholders. From the comparison provided in Table 1 and Table 2, it is evident that the
SEOMAS framework can help multi-site distributed software development teams to resolve the bug issues by
improving the effectiveness and the efficiency of communication and coordination as well as enabling knowledge
sharing as follows.

1. Before filing a bug report, the ontology agent can help a software developer to locate related bug reports
based on their associated concepts defined in the SE Ontology and its instances. Then s/he can view a list of
existing bugs reported to a particular class and determine whether the current bug is a duplicate. In this case,
duplicated bug reports could be identified early and avoided. This can reduce the unnecessary information
overload and considerably reduce confusion as well as help to prevent tedious conflict.

2. After a bug has been filed, the ontology agent can recommend a person who is most likely able to resolve
the bug issue, and sends a message to alert him about the new bug report that potentially needs his expertise to
resolve. This can help to match a bug to a potential fixer or consultant to avoid the inadequate fixes from
someone without expertise with this particular bug.

3. When the bug is being fixed, the ontology agent can provide relevant information that is necessary for
fixing the bug such as the history of bugs reported to the problem class and their resolution, or related software
components and their owners. Then the developer can know what dependencies exist and check with relevant
people before making a change to prevent unintended side effects from a change made.

4. When a developer makes a change to the source code, he is also proactively informed about the
components that potentially may be affected by a change. This can reduce unintended side effects from the
impact of the bug fixing, and avoid future problems.

5. The ontology agent sends a message to notify the bug reporter as soon as the bug status is changed to
“resolved”. The reporter then knows that the issue that he reported has been resolved, so he can verify the

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 61

solution. Once he is satisfied with the solution, the bug report can be closed. The SEOMAS agents can improve
real-time awareness of team members and enable efficient coordination without overloading them.

Parameters for Efficiency Measurement

In the above scenarios, the efficiency of bug resolution by utilising the SEOMAS framework is measured by
three parameters, namely, time to complete the task, the number of team members involving in the bug resolution,
and the number of team members’ actions.

1. Time to complete the task
Without the support of SEOMAS, the estimated time that would be taken to resolve a single bug

issue is 27 days. However, when SEOMAS is utilised, it takes only three days to fix the same bug. This
significant reduction in time is due to the fact that source code artefacts and other software-related project
information (e.g., bug reports, archived communications) are all captured and can be integrated to generate
interconnections among them. The ontology agent can utilise this interlinked knowledge space to deliver useful
and timely information to development teams. The delivered information is also based on previous historical data
in the software project. Information such as a match between a bug and expert, related software components and
related bugs, can assist developers to diagnose and fix the bug more effectively and efficiently. Therefore, the
response time required to correct failures to complete the bug resolution task is reduced.

2. The number of team members involving in the bug resolution
 As seen in Table 1, six team members are involved in the bug resolution process. Even though the

bug is not a complicated one and may require only a simple modification by an expert, without utilising the
SEOMAS platform, it goes around across multiple sites which leads to several iterations of inappropriate fixes
from someone without expertise in fixing this kind of bug; moreover it unnecessarily prolongs the bug
resolution process. With the support from the SEOMAS framework, fewer team members are involved in the
bug resolution process because the number of people reporting duplicate bugs can be reduced and the bug can
be directly assigned to the appropriate team member who has the expertise required to resolve the issue instead
of going around to several people.

3. The number of team members’ actions
 In the bug resolution scenario without support from the SEOMAS framework, it can be seen that

there are a number of unnecessary actions from the team members. For example, personnel are filing duplicated
bugs or iteratively fixing the same bug. This is because the information and interactions which relate to the bug
are stored in various software artefacts without links between them. When the SEOMAS platform is utilised,
the source code is annotated using meta-data that is semantically rich to enable it to be interlinked with other
relevant information. Hence, the development artefacts are all related, not independent. Therefore, the ontology
agent can help to locate related problems and deliver them to the team members to prevent the same bugs from
being reported multiple times. Therefore, the number of team members’ actions is decreased from thirteen
actions to six actions.

From Table 2, it can be seen that the total number of actions with SEOMAS support is higher than
without the SEOMAS support in Table 1. This is because several actions are performed by the SEOMAS agents
to achieve their goal and to enable team members to perform their tasks more efficiently. These actions include
the translation between team members and their user agents, identifying expert and recommending useful
information about related software components, sending messages sent to relevant team members. However,
these actions are autonomously performed by the agents and do not impact on team members’ performance.

4. Conclusions and Future work
 In this paper, the SEOMAS framework for semantic annotation to automate knowledge capture of
source code artefacts is proposed. The agents utilise the SE Ontology to capture knowledge from software
development artefacts during the daily software development activity. The captured knowledge is populated as
new instances in the SE Ontology repository to allow project team members and software agents to access it. In
the future, the SEOMAS framework can be extended to capture the semantics of other types of software
artefacts. The extension can cover the semantic annotation of both structured information (e.g., UML diagrams,
issue tracking, commit data) and unstructured information (e.g., requirement documents, bug reports, forum
discussion).

The 2nd International Conference of Multidisciplinary Approaches on UN Sustainable Development Goals (UNSDGs) |
Bangkok Thailand | 28-29 December 2017

 COM | 62

References
[1] D. E. Forbes, A Framework for Assistive Communications Technology in Cross-Cultural Healthcare.

School of Information Systems, Curtin Business School, Curtin University, 2013.
[2] L. Qiang, C. Ming, and W. Zhiguang. A semantic annotation based software knowledges sharing space.

Network and Parallel Computing, 2008. NPC 2008. IFIP International Conference on, doi:
10.1109/npc.2008.55.

 [3] Z. Zygkostiotis, D. Dranidis, and D. Kourtesis. Semantic annotation, publication, and discovery of Java
software components: an integrated approach. In Proceedings of the 2nd Workshop on Artificial
Intelligence Techniques in Software Engineering (AISEW 2009), Thessaloniki, Greece: CEUR-WS.
org. 168-178.

[4] L. d. O. Arantes, and R. d. A. Falbo. An infrastructure for managing semantic documents. In Enterprise
Distributed Object Computing Conference Workshops (EDOCW), 2010 14th IEEE International,
October 25-29, 2010; 235-244. IEEE.

[5] D. Panagiotou, and G. Mentzas, Leveraging software reuse with knowledge management in software
development. International Journal of Software Engineering and Knowledge Engineering. 2011;
21(5);693-723; 2011.

[6] D. Damljanovic, F. Amardeilh, and K. Bontcheva, CA manager framework: creating customised
workflows for ontology population and semantic annotation. In Proceedings of the Fifth International
Conference on Knowledge Capture, Redondo Beach, California, USA, 2009, 177-178.

[7] A. Taglialatela, and F. Taglino, A semantics-based approach to software reuse. In the Fifth Interop-
Vlab.It Workshop on Complexity of Systems, Complexity of Interoperability in conjunction with itAIS
2012., Rome, Italy.

[8] W. F. Tichy, S. J. Köerner, and M. Landhäußer. Creating software models with semantic annotation. In
Proceedings of the Third Workshop on Exploiting Semantic Annotations in Information Retrieval,
Toronto, ON, Canada, 2010; 17-18.

[9] P. Graubmann, and M. Roshchin. Semantic annotation of software components. In Software
Engineering and Advanced Applications, 2006. SEAA '06. 32nd EUROMICRO Conference on, 2006;
46-53.

[10] M.-P. Huget, and J. Odell. Representing agent interaction protocols with agent UML. Agent-Oriented
Software Engineering V: 5th International Workshop, AOSE 2004, New York, NY, USA, July 19,
2004. Revised Selected Papers, J. Odell, P. Giorgini and J. P. Müller, eds., pp. 16-30, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005.

[11] M.-P. Huget, J. Odell, and B. Bauer. The AUML approach. Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook, F.
Bergenti, M.-P. Gleizes and F. Zambonelli, eds., 237-257, Boston, MA: Springer US, 2004.

[12] D. Beckett, and B. McBride. RDF/XML syntax specification (revised). W3C recommendation. 2004;
10.

[13] J. Ashraf, O. K. Hussain, and F. K. Hussain. A Framework for Measuring Ontology Usage on the Web.
The Computer Journal. 2012.

[14] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann. DBpedia - A
crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the
World Wide Web. 2009;7(3): 154-165.

[15] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems for software engineering.
Software, IEEE. 2010; 27(4): 80-86.

[16] "QDox," October 11, 2014; http://qdox.codehaus.org.
[17] Y. Liao, M. Lezoche, H. Panetto, and N. Boudjlida. Semantic annotation model definition for systems

interoperability. On the Move to Meaningful Internet Systems: OTM 2011 Workshops. 2011; 61-70.
[18] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing multi-agent systems with JADE: John

Wiley & Sons; 2007.
[19] G. Caire, and D. Cabanillas. Jade tutorial application – Defined content languages and ontologies.12

July 2016; http://jade.tilab.com/doc/tutorials/CLOntoSupport.pdf.
[20] P. Wongthongtham, T. Dillon, and E. Chang. State of the Art of Community-Driven SE Ontology

Evolution. In Proceedings of Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on, doi: 10.1109/DASC.2011.170.

